Thermostable milk-filled fillings are currently in demand in the bakery and confectionery industry. They are put forward by the high requirements of the technological and economic plan both from manufacturers and consumers. The composition of thermostable milk-stuffed fillings includes binary combinations of polysaccharides that have the ability to form heat-resistant gels and allow them to change their rheological characteristics to a large extent. This is due to the possibility of rational use of a mixture of polysaccharides, regulation of structural and mechanical, functional and technological indicators of fillings, ensuring their high organoleptic characteristics.

We have proposed the creation of a thermostable milk-based filling with the addition of gelatin and transglutaminase, the use of which will provide a thermostable structure. As a basis, it is planned to use a binary combination of polysaccharides that have high water-tuning properties.

The article analyzes the existing technologies of thermostable milk-based fillings. Summed up data on functional and technological properties of polysaccharides, conditions of their gel formation and known binary combinations, which are used in modern conditions in the production of food products are given. The technological requirements for gels are based on binary combinations of polysaccharides, which are planned to be used as part of a thermostable milk-based filling using gelatin and transglutaminase.

A visual assessment was made of binary combinations of polysaccharides that were analytically selected for use in milk-based heat-resistant filling. The dependence of the strength of the gel structure on the basis of the binary combinations of polysaccharides with the ksantanum-kumite of konjac and the quiche of xanthan gum of tare on the concentration of gum xanthan, based on their total content of the 1% mixture, was studied. It is established that the texture characteristics of rational use is the use of binary combinations of quartz xanthan gum tar.

It has been determined that the gel is obtained with maximum strength using a mixture of xanthan gum quiche tarts for their ratio of 60:40 to 40:60.

Keywords: xanthan gum, tara gum; konjac gum; structure formation; strength of the gel, polysaccharides.