Further improvement emulsifiers possible when finding new information about work processes in these machines. The actual problem is the reduction of heating of minced meat in its grinding in emulsifier. Previous research has found that the rate of arrival of raw materials from bunkers-feeders emulsifier is not sufficient given the speed of the knife cutter assembly. Consequently, the actual productivity is less than theoretically possible, and heating of the raw material is high due to the fact that per unit mass of raw material accounted for a large emission of heat from the friction of the working bodies. To justify high-performance methods of feeding beef to a cutting site of emulsifier possible only with due account of the rheological properties of raw meat. The methodology of experimental studies of structural-mechanical properties of minced meat was to use a modified electromechanical universal testing machine SANS CMT2503. We used the following nozzle indenture: cylindrical plunger and Magness-Taylor. The raw materials used for stuffing sausage doctoral and minced pork sausages at 8°C. During the tests, the raw materials were installed under the indenter (cylindrical cell filled with the necessary amount of raw material and installed it under the bar, centruose relative to the indenter, and then turn on the drive. The speed of the indenter was 1·10⁻³ m/s and 2·10⁻³ m/s. As a result of studies have experimentally investigated the structural-mechanical properties of minced meat, which often is processed in emulsifier. The most common module axial compression characteristic of pork sausage doctoral (20.20 kPa) for minced meat sausages pork it takes a smaller value (to 14.04 kPa). The maximum stress standard penetration is also observed for minced meat sausage doctoral (of 7.71 kPa), while for minced meat sausages pork of 7.02 kPa, respectively. The data obtained can be used in the justification of high-performance methods of feeding minced meat to the cutting unit emulsifiers.

Keywords: meat comminutor, meat, screw, serve, rheological properties.